skip to main content


Search for: All records

Creators/Authors contains: "Qu, Meng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning node representations for networks has attracted much attention recently due to its effectiveness in a variety of applications. This paper focuses on learning node representations for heterogeneous star networks, which have a center node type linked with multiple attribute node types through different types of edges. In heterogeneous star networks, we observe that the training order of different types of edges affects the learning performance signiffcantly. Therefore we study learning curricula for node representation learning in heterogeneous star networks, i.e., learning an optimal sequence of edges of different types for the node representation learning process. We formulate the problem as a Markov decision process, with the action as selecting a speciffc type of edges for learning or terminating the training process, and the state as the sequence of edge types selected so far. The reward is calculated as the performance on external tasks with node representations as features, and the goal is to take a series of actions to maximize the cumulative rewards. We propose an approach based on deep reinforcement learning for this problem. Our approach leverages LSTM models to encode states and further estimate the expected cumulative reward of each state-action pair, which essentially measures the long-term performance of different actions at each state. Experimental results on real-world heterogeneous star networks demonstrate the effectiveness and effciency of our approach over competitive baseline approaches. 
    more » « less
  2. Extracting relations from text corpora is an important task with wide applications. However, it becomes particularly challenging when focusing on weakly-supervised relation extraction, that is, utilizing a few relation instances (i.e., a pair of entities and their relation) as seeds to extract from corpora more instances of the same relation. Existing distributional approaches leverage the corpuslevel co-occurrence statistics of entities to predict their relations, and require a large number of labeled instances to learn effective relation classiffers. Alternatively, pattern-based approaches perform boostrapping or apply neural networks to model the local contexts, but still rely on a large number of labeled instances to build reliable models. In this paper, we study the integration of distributional and pattern-based methods in a weakly-supervised setting such that the two kinds of methods can provide complementary supervision for each other to build an effective, uniffed model. We propose a novel co-training framework with a distributional module and a pattern module. During training, the distributional module helps the pattern module discriminate between the informative patterns and other patterns, and the pattern module generates some highly-conffdent instances to improve the distributional module. The whole framework can be effectively optimized by iterating between improving the pattern module and updating the distributional module. We conduct experiments on two tasks: knowledge base completion with text corpora and corpus-level relation extraction. Experimental results prove the effectiveness of our framework over many competitive baselines. 
    more » « less
  3. Pattern-based methods have been successful in information extraction and NLP research. Previous approaches learn the quality of a textual pattern as relatedness to a certain task based on statistics of its individual content (e.g., length, frequency) and hundreds of carefully-annotated labels. However, patterns of good contentquality may generate heavily conflicting information due to the big gap between relatedness and correctness. Evaluating the correctness of information is critical in (entity, attribute, value)-tuple extraction. In thiswork,we propose a novel method, called TruePIE, that finds reliable patterns which can extract not only related but also correct information. TruePIE adopts the self-training framework and repeats the training-predicting-extracting process to gradually discover more and more reliable patterns. To better represent the textual patterns, pattern embeddings are formulated so that patterns with similar semantic meanings are embedded closely to each other. The embeddings jointly consider the local pattern information and the distributional information of the extractions. To conquer the challenge of lacking supervision on patterns’ reliability, TruePIE can automatically generate high quality training patterns based on a couple of seed patterns by applying the arity-constraints to distinguish highly reliable patterns (i.e., positive patterns) and highly unreliable patterns (i.e., negative patterns). Experiments on a huge news dataset (over 25GB) demonstrate that the proposed TruePIE significantly outperforms baseline methods on each of the three tasks: reliable tuple extraction, reliable pattern extraction, and negative pattern extraction. 
    more » « less
  4. Recognizing entity synonyms from text has become a crucial task in many entity-leveraging applications. However, discovering entity synonyms from domain-specific text corpora (e.g., news articles, scientific papers) is rather challenging. Current systems take an entity name string as input to find out other names that are synonymous, ignoring the fact that often times a name string can refer to multiple entities (e.g., “apple” could refer to both Apple Inc and the fruit apple). Moreover, most existing methods require training data manually created by domain experts to construct supervised learning systems. In this paper, we study the problem of automatic synonym discovery with knowledge bases, that is, identifying synonyms for knowledge base entities in a given domain-specific corpus. The manually-curated synonyms for each entity stored in a knowledge base not only form a set of name strings to disambiguate the meaning for each other, but also can serve as “distant” supervision to help determine important features for the task. We propose a novel framework, called DPE, to integrate two kinds of mutually complementing signals for synonym discovery, i.e., distributional features based on corpus-level statistics and textual patterns based on local contexts. In particular, DPE jointly optimizes the two kinds of signals in conjunction with distant supervision, so that they can mutually enhance each other in the training stage. At the inference stage, both signals will be utilized to discover synonyms for the given entities. Experimental results prove the effectiveness of the proposed framework. 
    more » « less